Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR is the most powerful analytical tool currently available to an organic chemist.

NMR allows characterization of a very small amount of sample (10mg), and does not destroy the sample (non-destructive technique).

Typically NMR is used in conjunction with other types of spectroscopy and chemical analysis to fully confirm a complicated molecule's structure.
NMR Theory

A nucleus with an odd atomic number or an odd mass number has a nuclear spin. (e.g. \(^1\text{H}\), \(^{13}\text{C}\), \(^{19}\text{F}\), … etc)

The spinning charged nucleus generates a magnetic field.

spin\king\ proton \hspace{1cm} \text{loop of current} \hspace{1cm} \text{bar magnet}
When placed in an external field, spinning protons act like bar magnets.
NMR Theory cont

When NMR active nuclei are subjected to a powerful magnetic field (H_o), they have a tendency to align their spins with the external field.

Either:
parallel / α state (lower energy)
or
antiparallel / β state (higher energy).
NMR Physics

The difference in energy between the α and β states depends on the applied field. (Typically 10^{-5} kcal/mol).

$$\Delta E = h\nu = \gamma H_0 \frac{h}{2\pi} \quad h = \text{Planck’s constant}$$
$$\nu = \text{frequency of radiowaves}$$
$$H_0 = \text{External magnetic field}$$
$$\gamma = \text{gyromagnetic constant}$$

Radiowaves ($\nu \sim 10^{10}$ Hz) can thus flip / excite spin states of atomic nuclei.

It is this interplay of magnetic field, RF waves and nuclear spin states that is the key to observing NMR. (Excite all nuclei with RF, observe their decay)
A Simple NMR Machine

An NMR machine consists of:

(1) A powerful, supercooled magnet (stable, with sensitive control, producing a precise magnetic field).

(2) A radio-frequency transmitter (emitting a very precise frequency).

(3) A detector to measure the emission of radiofrequency by the sample.

(4) A recorder (to plot the output).
NMR System
Use of the NMR Machine

Put sample in magnet
Tell computer what experiment you desire (e.g. $^1\text{H} / \text{CDCl}_3$)
Lock and Shim (Establish magnetic field homogeneity)
Acquire (Zap it with an all-exciting pulse of RF; Delay;
Observe relaxation decay = FID.)
Repeat “excitation - delay – decay” 2^n times.
Fourier Transform combined FID’s into an NMR spectrum.
(From time domain into frequency domain)
Manipulate and print Spectrum.
1H NMR Tells Us…

(1) The number of different absorptions implies how many different types of hydrogens are present.

(2) The amount of shielding (chemical shift) is determined by each hydrogen's environment, and so we get information about the local electronic surroundings for each hydrogen.

(3) The intensities of the signals tell us the number of identical hydrogens.

(4) The splittings of each signal tells us about the other groups proximate to the hydrogens in question.
Number of Signals

Equivalent hydrogens have the same chemical shift.
Typical Values

<table>
<thead>
<tr>
<th>Type of Proton</th>
<th>Approximate δ</th>
<th>Type of Proton</th>
<th>Approximate δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>alkane ((-\text{CH}_3))</td>
<td>0.9</td>
<td>(\text{(\mathrm{C} = \text{C})})</td>
<td>1.7</td>
</tr>
<tr>
<td>alkane ((-\text{CH}_2))</td>
<td>1.3</td>
<td>(\text{(\mathrm{Ph} \rightarrow \text{H})})</td>
<td>7.2</td>
</tr>
<tr>
<td>alkane ((-\text{CH}))</td>
<td>1.4</td>
<td>(\text{(\mathrm{Ph} \rightarrow \text{CH}_3)})</td>
<td>2.3</td>
</tr>
<tr>
<td>(-\text{C} = \text{C} \rightarrow \text{CH}_3)</td>
<td>2.1</td>
<td>(\text{(\mathrm{R} \rightarrow \text{CHO})})</td>
<td>9–10</td>
</tr>
<tr>
<td>(-\text{C} = \text{C} \rightarrow \text{H})</td>
<td>2.5</td>
<td>(\text{(\mathrm{R} \rightarrow \text{COOH})})</td>
<td>10–12</td>
</tr>
<tr>
<td>(\text{(\mathrm{R} \rightarrow \text{CH}_2 \rightarrow X)}) (X = halogen, O)</td>
<td>3–4</td>
<td>(\text{(\mathrm{R} \rightarrow \text{OH})}) variable, about 2–5</td>
<td></td>
</tr>
<tr>
<td>(\text{(\mathrm{Ar} \rightarrow \text{OH})})</td>
<td>variable, about 4–7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{(\mathrm{R} \rightarrow \text{NH}_2)})</td>
<td>variable, about 1.5–4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(-\text{COOH}\) \(\delta 11-\delta 12\)
Delta Scale

chemical shift, ppm $\delta = \frac{\text{shift downfield from TMS (in Hz)}}{\text{spectrometer frequency (in MHz)}}$

<table>
<thead>
<tr>
<th>600 Hz</th>
<th>480 Hz</th>
<th>360 Hz</th>
<th>240 Hz</th>
<th>120 Hz</th>
<th>0 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>ppm δ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TMS

<table>
<thead>
<tr>
<th>60 MHz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3000 Hz</th>
<th>2400 Hz</th>
<th>1800 Hz</th>
<th>1200 Hz</th>
<th>600 Hz</th>
<th>0 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>ppm δ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TMS

| 300 MHz |

Intensity of Signals

The area under each peak is proportional to the number of protons. (The Integral Trace)

It is just a RATIO.
The $N + 1$ Rule

If a signal is split by N equivalent protons, it is split into $N + 1$ peaks.
Values for Coupling Constants

<table>
<thead>
<tr>
<th>Approx. J</th>
<th>Approx. J</th>
</tr>
</thead>
<tbody>
<tr>
<td>(free rotation) 7 Hza</td>
<td>(ortho) 8 Hz</td>
</tr>
<tr>
<td>(cis) 10 Hz</td>
<td></td>
</tr>
<tr>
<td>(trans) 15 Hz</td>
<td>(meta) 2 Hz</td>
</tr>
<tr>
<td>(geminal) 2 Hz</td>
<td></td>
</tr>
<tr>
<td>(allylic) 6 Hz</td>
<td></td>
</tr>
</tbody>
</table>

aThe value of 7 Hz in an alkyl group is averaged for rapid rotation about the carbon–carbon bond. If rotation is hindered by a ring or bulky groups, other splitting constants may be observed.
1H NMR Information

1) The number of different absorptions implies how many different types of hydrogens are present.

2) The amount of shielding (chemical shift) is determined by each hydrogen's environment, and so we get information about the local electronic surroundings for each hydrogen.

3) The intensities of the signals tell us the number of identical hydrogens.

4) The splittings of each signal tells us about the other groups proximate to the hydrogens in question.
13C NMR

Can also observe other NMR active nuclei
Common others are 19F, 13C and 32P.

13C is extremely useful for organic molecules!

However:

- 13C only 1% of naturally occurring carbon atoms.
- 13C has 60 times less NMR sensitivity than 1H.

\Rightarrow Effectively 6000 times harder to observe 13C than 1H!
Modern \(^{13}\)C NMR

To achieve detectable \(^{13}\)C NMR signals:
- Concentrated samples (of high purity)
- Higher number of scans
- Remove H couplings ("broad band decoupling")
 \[\Rightarrow \text{Signals are singlets} \]

\(^{13}\)C NMR not quantitative. (No integrations)

\(^{13}\)C NMR tells you
- Number of Different Carbons
- Chemical Type of Carbons
Appendix C The 13C Correlation Chart for Chemical Classes

- **R** = H or alkyl substituents
- **Y** = polar substituents
- **Acyclic hydrocarbons**
 - CH_3
 - CH_2
 - CH
 - C

- **Alicyclic hydrocarbons**
 - C_3H_6
 - C_4H_8 to $\text{C}_{10}\text{H}_{20}$

- **Alkenes**
 - $\text{H}_2\text{C} = \text{C} - \text{R}$
 - $\text{H}_2\text{C} = \text{C} - \text{Y}$
 - $\text{C} = \text{C} - \text{C} = \text{C} - \text{R}$

- **Allenes**
 - $\text{C} = \text{C} = \text{C}$

- **Alkynes**
 - $\text{C} = \text{C} - \text{R}$
 - $\text{C} = \text{C} - \text{Y}$

- **Aromatics**
 - $\text{Ar} - \text{R}$
 - $\text{Ar} - \text{Y}$

- **Heterocaromatics**
 - $\text{Alcohols} \text{C} = \text{OH}$
 - $\text{Ethers} \text{C} - \text{O} - \text{C}$
FIGURE 5.1(c). The 13C-NMR spectrum of diethyl phthalate with the protons completely decoupled and a 10-s delay between pulses. The solvent used was CDCl$_3$ at 25.2 MHz.
^{13}C NMR Peaks and Shifts

^{13}C will differentiate these ethers.

^{13}C and ^1H are almost always used in conjunction with one another.
Your Work / Problems

• Match the five Ethers with their 1H NMRs

• Identify the two Ethers and their ratio in the mixture samples

• Identify an Ether from its 13C NMR